
NASA CASE NO.

PRINT FIG.

/-

/. . /,_/_/

NP0-18435-1-CU

NOTICE

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexclusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident Office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number: 07/792,501

Filed Date: November 13, 1991

c'iCYdt_ni_'blA "_F b_oFT,iAKE C;3_P_NENTS

NRO-JPL

N92-30543

Unclas

5

Inventors: JPL Case No.: 18435

Lloyd Van Warren NASA Case No.: NPO-18435-I-CU

Brain C. Beckman Attorney Docket No.: JPL 89-015

Contractor: Date: November 12, 1991

Jet Propulsion Laboratory

ENCYCLOPEDIA OF SOFTWARE COMPONENTS

i0

15

2O

25

30

AWARDS ABSTRACT

Intelligent browsing through a collection of

reusable software components is facilitated with a

computer having a video monitor and a user input

interface such as a keyboard or a mouse for transmitting

user selections, by presenting a picture of encyclopedia

volumes with respective visible labels referring to types

of software, in accordance with a metaphor in which each

volume includes a page having a list of general topics

under the software type of the volume and pages having

lists of software components for each one of the generic

topics, altering the picture to open one of the volumes

in response to an initial user selection specifying the

one volume to display on the monitor a picture of the

page thereof having the list of general topics and

altering the picture to display the page thereof having a

list of software components under one of the general

topics in response to a next user selection specifying

the one general topic, and then presenting a picture of a

set of different informative plates depicting different

types of information about one of the software components

in response to a further user selection specifying the

one component.

Serial No._ /

Filing O_,_e________/___c_.f$- ". 5_/

f'_ .,p

i- as:der)a CA. 9I 10 9
-(C:ty-} (State) (_i;_)I-_...

5

I0

1

JPL Case No. 18435

NASA Case No. NPO-18435-1-CU

Attorney Docket No. JPL/015-91

_0...>/7 .; ...Co/ _

'_TENT APPLICA_._:0 _ :,

ENCYCLOPEDIA OF SOFTWARE COMPONENTS

BACKGROUND OF THE INVENTION

Oriqin of the Invention:

The invention described herein was made in the

performance of work under a NASA contract, and is subject

to the provisions of Public Law 96-517 (35 USC 202) in

which the Contractor has elected not to retain title.

15

Technical Field:

The invention is related to software development and

engineering tools which increase software design

productivity.

2O

25

Background Art:

A high fraction of the time spent developing new

software systems is spent performing mundane functions

that are well known in the art. By comparison, when a

mechanic goes to make a new device, he does not reinvent

mundane pieces, such as the threaded screw. The same

cannot be said of software engineers. Software engineers

have long identified the need for convenient, easy-to-

learn, intuitive software reuse systems to support rapid

prototyping.

30

35

Software development is a tedious, expensive, time-

consuming, and error-prone process. Approaches to

improving the process include object-oriented

programming, computer-aided software (CASE), software

reuse, formal mathematical verification, structured

walkthroughs, formal testing regimens, and so on.

Most hardware artifacts are constructed from

standard parts fitted together with standard fasteners.

Custom parts and fasteners are used only when their much

i0

15

2O

25

30

2

higher cost can be justified. Using standard parts not

only makes replacement easier but also amortizes the cost

of design, engineering, and tooling across large

production runs, often spanning decades of time.

The analogy in software to the use of standard parts

in hardware is the reuse of previously developed software

code, modules, libraries, designs, architectures,

documentation, test data, test routines, test strategies,

and so on. All of these information artifacts, and more,

are software in the sense that they are directly related

to the production and use of computer instructions. We

use the term "software" in this broad sense in this

paper.

One reason software is expensive is that, for the

most part, we do not amortize the cost or development by

reusing components in new applications. Software is

still, by and large, a craft process characterized by the

custom design and fabrication or components. The lack of

software reuse is especially ironic since economies of

scale are easier to achieve in software than in hardware.

The reason is that software is mere information and,

therefore, massless. Replicating and distributing it is

relatively inexpensive (a major cost driver in hardware

industries is the mass of the objects being produced).

One would think, on the face of it, that an industry that

could achieve economies of scale relatively easily would

eagerly do. Yet, we have not seen the "Software

Industrial Revolution".

35

Many reasons have been advanced for the failure of

the software industry to adopt a standard component parts

technology. Perhaps the most plausible reason is that it

often takes more effort merely to research existing

software components than to develop them anew. In other

words, many software developers-potential consumers of

3

reusable software-simply find it more cost-effective to
invent new software than to look for old software.

5

i0

15

2O

The only discipline in which software component

reuse is traditional is computational mathematics. This
is at least partly due to the fact that it requires a

great deal of specialized knowledge and experience to
write correct and efficient mathematical software. It

is, in fact, for non-specialists, not easier to reinvent

than to reuse. We find it interesting that the majority
of mathematical software - the most reused software - is

written in Fortran. Of all major programming languages,

Fortran is perhaps the least hospitable, prima facie, to

software reuse. It has virtually none of the packaging

and information-hiding features that conventional wisdom

deems helpful, if not necessary, for reusability. We take

this fact as supporting evidence in favor of our

consumer-side approach to software reuse, as opposed to a

producer-side approach that posits basic changes in the

way software is written as a precondition for reuse.

People will reuse software, even if that software is not

written for maximum reusability, if it is easier for them
to reuse than to reinvent.

25

3O

35

One prior attempt at making software retrievable is
disclosed in U.S. Patent No. 4,860,204 to Gendron et al.

In this patent, software components called softrons are

created in a single language and stored in a file cabinet

metaphor, rather than using existing software components

of any language. A particular softron is accessed in

response to a user's selection of relevant software

attributes. However, there is no disclosure of any means
for permitting the user to first view the attributes and
other characteristics of the accessed softron before

incorporating it in a program under construction, absent
external means of some sort. Gendron et al. therefore

have nothing to do with attempting to reuse existing

4

software, but rest their concept on creating a complete

set of software components in a single language•

i0

Objects of the Invention:

It is the principal object of the invention to make it

easier to reuse than to reinvent software. We can

achieve maximum impact by focusing on consumer issues: by

trying to make it easier to reuse software in general. We

feel that the process that a potential consumer of

reusable software components must go through consists of

the following steps:

15

20

25

30

35

• locating,

• understanding,

• retrieving,

• validating, and

• adapting

existing software. We call this process LURVA, an acronym

constructed from the first letters or each or the five

steps. This is in concert with other, published task

analyses of software reuse.

We focus on facilitating LURVA in a very general way

to make it easier to reuse software in general. By

software in general, we mean software in any programming

language, for any application domain, for any platforms,

etc.

A related object of the invention is to directly aid

locating, understanding, and retrieving, the first three

steps of LURVA. In the invention, an encyclopedia of

software components (ESC), locating is facilitated

through a very general classification scheme, based on

semantic networks, and through tying this scheme closely

to a hypermedia browsing-and-searching front end.

Understanding is facilitated by describing software with

5

i0

15

2O

25

3O

35

5

electronically cross-linked text, graphics, animation,

audio, video, and typeset mathematics, i.e., hypermedia.

Retrieving is facilitated by encapsulating knowledge
about network access along with the descriptions of

software and by automatically computing closed sets of
software items that enable a chosen time to be used as an

independent unit or a component.

The invention was developed with the following

assumptions:

• Many programmers and managers feel that the effort of

reusing software is greater than the effort of writing
software from scratch.

• The balance is tipped in favor of reuse for
mathematical software because this software is inherently

difficult to write and because there is a long radiation

of reusing this kind of software.
• We do not need to wait for fundamental shifts in the

way software is produced before trying to tip the balance

in favor of reuse for general software. We can promote

reuse now by simply encapsulating, automating, and

distributing knowledge about how to reuse.

• The LURVA process accounts for most of the cost of
software reuse on the consumer side.

• Maximum, short-term leverage to facilitating LURVA can

be applied by automating the locating, understanding, and

retrieving (LUR-) steps. Even if programmers must

validate and adapt (-VA) components manually, they will
find the total effort less than that of reinventing.
• There exist vast numbers of accessible and reusable

software artifacts now, mostly on distributed network
nodes.

• Programmers are especially eager to reuse their own
software and to make it accessible and reusable by other

programmers (the urge to publish).

• If we can make it easy for programmers to submit their
own software for consideration for inclusion in the ESC,

5

6

we create an automatic growth mechanism for the ESC by

capitalizing on the urge to publish.

• Finally, programmers will want to reuse the mechanisms

of the ESC itself to make hypermedia front ends for

special-purpose, local collections of software in the

broadest sense of the word (designs, architectures, test

data, etc.)

i0

15

20

25

The foreseeable effects of the invention are the

following:

most impact: The standard practice of programming

is changed so that reuse is almost always attempted

before reinvention. The habit of pulling software off

networks by consulting an on-line, comprehensive,

international ESC becomes commonplace. Furthermore, the
job category of software technician is created. A

software technician is one who fabricates software by

assembling specified, standard parts without profound

knowledge of the working of these parts. Programmers are

freed from routine assembly to devote themselves to
design.

moderate impact: The ESC proves to be a valuable

programmer's tool. At the very least, it helps to teach

programmers to document, classify, and reuse their own

software. Requirements for improvements on the structure

and contents of the ESC result from the research program.

30

35

SUMMARYOF THE INVENTION

The invention is a computer system embodying an

encyclopedia of software components (ESC) which stores a

large compendium of reusable software components with a

hypermedia browser system consisting of an encyclopedia

metaphor at the highest level corresponding to the
compendium and a tray metaphor at the lowest level

corresponding to each software component. In the tray

metaphor, each software component is in its own "tray"
containing several plates corresponding to different

7

representations of the software component (including

graphical and animated representations in appropriate

cases), the attributes of the software component,
utilities associated with the software component, etc.

The invention further includes a search system employing

the tray metaphor which searches on selected attributes

stored in the attributes plate of each tray.

i0

ESC enables the convenient and intuitive location

and retrieval of reusable software tools and parts

through a graphical hypertext user interface. Hypermedia

is a term for information systems that can depict

animation, audio, text, and graphics.

15

2O

25

The software developer first locates the general

category of books in which he is interested, then he
scans the book, as if it were a standard reference work,

to determine which pre-existing software components will

solve his immediate development needs.

Using this scheme, existing software packages can

simply be referenced and copied into the developer's

program. With ESC, the developer is free to concentrate

on those portions of his program that are unique to his
particular effort and requiring novel solutions. In other

words, his development procedure will now be more like

that of the mechanic who makes a new device by connecting

existing pieces to new pieces.

30 This approach should permit truly rapid prototyping,

greatly reduce the cost of software development, increase

the speed of development, and ensure greater robustness
in the resulting prototype.

35 ESC permits an endless series of software reference

books to be created, just as a library can hold a nearly

limitless collection of books. In fact, software

8

developers are allowed to create reference books
themselves and place them in the ESC library.

5
One embodiment of ESC supports rapid prototyping in

an application prototyping environment.

I0

15

In its current version, there are various software

components residing in the ESC. For design purposes these

can be divided into two groups. Group one components are

subroutines, functions, procedures and objects with a

minimum of entanglements and external dependencies. Group

one components live at the language cell level of use.

They are small, well abstracted modules of functionality

easily incorporated into larger programs. The group two

components tend to be larger, stand-alone applications
that live at the executive or shell level of use.

Examples of these are screen editors and system
utilities.

2O

25

Future embodiments of ESC will include advanced

media technology, including voice and video, and will

link ESC to a database management system (DBMS). The new
media will allow developers to experiment with non-

textual communication of information about software, such

as computer animation and recorded verbal descriptions.
Integrating ESC with a DBMSwill allow very large tool

bases to be handled and will facilitate technology
transfer.

3O

35

Yet another embodiment of ESC includes a graphical
hypertext feature called HyperCode. HyperCode will allow

a programmer not only to retrieve software, but to modify
it, execute it, and cross-link it with other software

using interactive graphics and hypertext.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a portion of a computer generated

5

i0

15

2O

25

30

35

9

video display representing one aspect of the encyclopedia

metaphor of the invention.
Figure 2 is a graphical flow diagram representing

the operation of the invention.

Figure 3 is a simplified schematic block diagram of

a computer system embodying the invention,

Figure 4 depicts a computer generated video display

representing another aspect of the encyclopedia metaphor
of the invention.

Figure 5 depicts a computer generated video display

of a dataplate in one aspect of the tray metaphor of the
invention.

Figure 6 depicts a computer generated video display
of a taxonomic graph in one aspect of the navigation aid
feature of the invention.

Figure 7 depicts the leftmost part of a computer
generated video display of a user's search path in

another aspect of the navigation aid feature of the
invention.

Figure 8 depicts the rightmost part of a computer

generated video display of a user's search path of Fig.
7.

Figure 9 depicts the computer generated display of

Figure 7 with a pop-up menu listing search path branching

options.

Figure i0 is a block diagram of a computer system

embodying the invention corresponding to Figure 3.

Figure ii is a block diagram of the central tool

base of the system of Figure I0.

Figure 12 is a block diagram of the browser system

in the system of Figure i0.

Figure 13 is a block diagram of the maintenance

subsystem of the system of Figure i0.

Figure 14 is a block diagram of the analysis

subsystem of the system of Figure i0.

Figure 15 depicts a computer generated video display

representing the tray metaphor of the invention and

i0

containing several information plates representing

different aspects of the software component of the tray.

Figure 16 depicts the full computer generated video

display in which the user has opened to one page of a

selected encyclopedia volume in the encyclopedia
metaphor.

I0

15

20

DETAILED DESCRIPTION OF THE INVENTION

Introductory Overview:

The ESC uses hypermedia front ends for subsystems

that classify, catalog, retrieve, and display information

about large, structured collections of reusable software.

The ESC concentrates information about software; the

software itself is on local and distributed repositories,

e.g., networks, archive servers and bulletin boards.

Among the features of the ESC are a metaphor of an

encyclopedia at the highest level (shown in Figure i) and

a metaphor of a tray of informative plates at the lowest

(software component) level in a hypermedia context. In

addition, an automated subsystem can add not only new

entries but new software classification structures.

25

30

35

The architecture of the ESC is illustrated

informally in Figure 2 and schematically in Figure 3.

The informal illustration of Figure 2 shows the

subsystems of the ESC iconically, emphasizing the

graphical appearance of each element on the user's video

monitor screen. The schematic of Figure 3 is a more

formal rendition of the subsystems of the ESC and the

data and control flows among the subsystems.

In Figure 2, the invention provides a video display

200 of a topological graph of distributed software

collections, each group of software being a point 210

whose relations with other groups are indicated by

connecting lines 212. The display can be translated to

another video display 214 which illustrates the same

5

I0

15

20

ii

relations in an object oriented database. In the video

display 214, each software group is a block 216 which

flows from more generic groups and branches into more

specific groups from left to right in Figure 2 along

connecting lines 218. The invention automatically

generates (220) from the information represented by the

object oriented database display 214 multiple hypermedia

search and browse tools (222) consisting of a video

display 224 of an encyclopedia metaphor comprising a

bookshelf browser tool and a video display 226 of a

logical search-by-inquiry interface comprising a search

tool. The video display 226 consists of topical lists of

software components having attributes corresponding to

those specified by the user. Interactive links 228

between these tools provides navigation tools consisting

of an overview navigator video display 230 and a history

list navigator video display 232. Each of the navigation
tool video displays 230, 232 illustrates to the user the

history of his activity in searching or browsing among
various software topics.

25

30

35

In Figure 3, a computer system embodying the

invention is briefly summarized as including an

application driver 300 having graphical user interfaces

(GUI's) which provide to the user 302 the video displays
illustrated in Figure 2. The application driver 300

interfaces with a bookshelf browser 304, a searcher 306

and a publisher 308. The publisher 308 is the source of

a software components description database 310 which

provides the search-by-logical query interface display

(226 in Figure 2) of the searcher 306. A hypermedia

generator 312 generates the display of the metaphor of

the encyclopedia bookshelf (224 in Figure 2) comprising

the highest level of the hypermedia specification

database 314 used by the browser 304. A retriever 316

responds to requests from both the browser 304 and the

searcher 306 to retrieve software components finally

I0

15

2O

25

3O

35

12

selected by the user 302 from either a local repository

318 or from remote off-line or networked repositories
320.

One of the ways the ESC supports an encyclopedia

metaphor is by displaying a shelf of books about software

in a widow on the programmer's screen, as shown in Figure

i. We choose the metaphor of an encyclopedia for three

reason. First, the encyclopedia metaphor is uniquely

suited to realization in hypermedia. Second, the

metaphor will be immediately familiar to most software

developers, who are literate people who have used

traditional encyclopedias often. Third, the encyclopedia

is an appropriate metaphor on epistemological grounds.
Encyclopedias arose from efforts to classify and

encapsulate all human knowledge. They use pictures, text
and a rich web of cross references to cope with

expansive, complex, ill-bounded, ambiguous, and

incomplete knowledge. Except for special cases (such as

computational mathematics), high-level descriptions or

software are inexact. In many cases, the only exact
description of a piece of software is the software

itself. Yet, high-level descriptions are precisely what

are needed by reusers who must understand and evaluate a

component quickly before "buying," without learning the

details. Being inexact, high-level descriptions can be

expansive, complex, ill-bounded, ambiguous, and

incomplete, i.e., the kind of knowledge for which

encyclopedias were designed. Furthermore, classifying

software is almost as difficult as classifying all human

knowledge. The reason is that software can be written

about any topic. It is a kind of universal theory

language-any sufficiently cogent idea can be "brought to

life" as a computer program. Thus, the space of

knowledge of the application domains of software is

almost the same as the space of all human knowledge. We

conclude that the encyclopedia is an appropriate metaphor

I0

15

2O

25

30

35

13

for representing and containing knowledge about software.

A metaphor for a simpler mechanism of an

encyclopedia might be a catalog. Such a metaphor could

adequate for certain, restricted kinds of software.

Consider again the example of computational mathematics.

The language of mathematics is sufficiently precise and

universal that it is possible to give unambiguous, high-

level specifications of mathematical software components.

Furthermore, this field is reasonably well understood,

and there is reasonable consensus on the overall

framework for classifying works in the field.

Specifications and taxonomies are currently published in

massive paper catalogs. Users can retrieve components

from repositories with high confidence that the

components will meet their requirements, which are

expressed in the same language as the specifications.

However, other areas of software application are not as

standardized nor as easily described as mathematics.

Generally, it is necessary both to describe software with

long narratives, diagrams, and even video; and to

describe the relations between components explicitly and

separately for each pair of components. Different kinds

of structures are needed to present different kinds of

high-level information. Because of its rigid, uniform

structure, the catalog metaphor breaks down when

stretched to represent fuzzy and variegated knowledge.

The realization of the ESC consists of computer

programs (subsystems) to simulate the appearance and

operation, as it were, of an encyclopedia. The ESC user

has access to three subsystems through mutually

consistent graphical user interfaces (GUIs) of the

applications driver 300 of Figure 3:

-the bookshelf browser 304 supports unstructured,

interactive browsing.

14

-the searcher 306 supports goal-directed, logical

query-style searches.

5 -the publisher 308 supports automated component
insertion and rebuilding of the browser and searcher.

i0

15

2O

The bookshelf window of the video display 224 of

Figure 2 is the primary interface to the ESC. It contains

a picture or a shelf or books strongly reminiscent of

encyclopedias (Figure i). This window waits visibly in

the background of the programming environment, ready to

be brought to the foreground when the need to find a

software component arises. When dormant, the bookshelf

window is analogous to a bookcase containing dormant
reference materials. When active, the bookshelf window

and its subwindows are analogous to reference books open

on the programmers desk. The bookshelf is designed to be

inviting and obvious; one or our goals is that it must be

possible to learn how to use the ESC simply by using it.

25

30

35

The titles i00 on the book spines 102 (Figure i)

denote application domains, e.g., Artificial

Intelligence, Computer Graphics, Data Structures, and so
on. These titles correspond to an implicit question asked

or the user: What is the application domain of the

software you are looking for?" When the user clicks on

the spine 102 of a book 104, the book 104 is opened.

Accompanied by the sound of a book being removed from a

shelf 106, a picture of a book 400 open to a hierarchical

table of contents 402 is presented in a new window or

video display illustrated in Figure 4. Each item 404 in
the table of contents 402 has a link or "button" to a

deeper level in the ESC classification scheme which the

user can explore by "clicking" onto the item 404 with a

cursor 406 or a mouse (not shown). The table of contents

402 usually corresponds to a second implicit question

15

asked of the user: "What is the functionality of the

software you are looking for?"

i0

15

2O

25

When browsing, the user supplies successively

sharper characterizations of the software of interest by

choosing options from button lists and traversing deeper

levels in the open-book window. Index tabs 408 appear on

the edges of pages 410 passed to help the user keep track

of current location. The button lists, index tabs, and

open-book displays are linked together in a hierarchy

that mirrors the ESC classification hierarchy. This

hierarchy can be tailored to some degree at the time the

ESC is built with the Publisher 308 (the process of

building the ESC is explained in greater detail below)

Eventually, the user reaches the final, lowest level

of the hierarchy, arriving at one or a few components.

At that point, a new kind of metaphor, a tray of

informative plates including the data plate 500

illustrated in Figure 5, is displayed on the user's video

monitor. The data plate 500 displays information about

the component, references to related components, and

buttons for automated retrieval of the component,
including the transitive closure of all software on which

the component depends, from distributed repositories.

Any network connections, dial-ups, mounting of remote
file systems, etc., necessary for retrieval are done

automatically by the ESC.

3O

35

For example, in Figure 5, the data plate 500

explains the quicksort algorithm software component using

a title and descriptor field 502, a code field 504 and

animation fields 506, 508 illustrating the operation of

the software component. The user can "click" on any one

of several buttons, including a Get It button 510 for

retrieving the software component itself, an Animate

button 512 for running an animated display (for example a

16

cartoon that may be available for this software

component), an Explain It button 514 for displaying a

detailed text explanation of the software component and

a Take Me Elsewhere button 516 for terminating the

session with the present software component. Graphical

displays 518, 520 (which may be animated upon request)

graphically depict the concept of the algorithm performed

by the software component.

i0

15

2O

We make a conscious effort to limit the depth and

the branching factor of the ESC, attending to a "magic

number seven, plus or minus two" that characterizes the

limitations of human short-term memory. To aid the user

further, the Bookshelf is integrated with spatial and
temporal navigators:

-an overview diagram that shows the contents of the

entire encyclopedia in the form of a graph (Figure 6),
and

-a history list that keeps track of the user's path

through the graph in the form of a stack with optional

branching points at each level (Figures 7, 8 and 9).

25

30

The graph 600 of Figure 6 corresponds to a relevant

portion of the object oriented data base 214 of Figure 2.

In Figure 6, the graph illustrates a taxonomy of
mathematical properties, in which a generic block 602

named "property" branches into topical blocks 604 which

in turn branch out into sub-topical blocks 606. The graph
600 serves as a guide to the user in planning his search

or browse activity.

35

The history list 700 of Figure 7 keeps the user from

getting "lost" by showing him where his search or browse

activity has thus far taken him. The history list 700 is

somewhat redundant with the index tabs 408 of Figure 4,

but the evident metaphorical value of the latter argue

for keeping them. Also, we feel that having a large

5

I0

15

20

25

17

variety of albeit redundant navigation aids, especially

for large hypermedia documents, is helpful rather than

confusing. Such tools are held to be generally helpful
in hypermedia systems and are well-known in the art.

Each block 702 in the history list is a window depicting
the software topic or component that the user has looked

at in chronological order from left to right. In the
example of Figures 7 and 8, the user has started at the

highest browse level, so that the first block 702a is the

encyclopedia bookshelf display of Figure i. The user

next selected the sorting topic from the table of
contents of one of the volumes so that the next block

702b illustrates an open volume at the appropriate page.

The user next selected the attribute "In Memory" and from
the resulting information in the "In Memory" block 702c

selected the Merge Sort algorithm of block 702d. Figure
8 shows that the last selection of the user was a fortran

listing of the Merge Sort software component (block

702e). Figure 9 illustrates the use of a pop-up window

900 which the user can request to make a selection at any
block. In the example of Figure 9, the user has
requested a listing of the various sort routines

performed in memory at the "In Memory" block 702c, so
that the pop-up menu 900 lists all of the available

software components which perform sort routines in

memory. The cursor 902 is on the Merge Sort label 904 of
the pop-up window 900, so that the user can "click" on
the label 904.

3O

35

The Searcher allows a user to specify desired

characteristics in any order, unlike the Browser, which
encourages a time order of access that mirrors the

classification hierarchy. The Searcher bypasses the

encyclopedia metaphor and instead first presents

classification criteria in scrolling lists from which
selections are made. No lists are presented that are not

known to be germane at any point. For example, a user

5

i0

18

who has not sufficiently sharpened a query to distinguish

between mathematical software and computer graphics

software would neither be given a list of arithmetic

precisions to choose from nor a list of color conventions

to choose from. The user can specify search criteria in

Boolean combinations of pattern-matching expressions.
The Searcher is accessible from buttons on the overview

diagram and from a menu. Whenever the user "clicks" on a

particular software component on a list, the "tray" of

that component is then displayed so that the user can

view the various informative plates therein, such as the

data plate illustrating the attributes of that software

component.

15

2O

25

3O

35

Both the Bookshelf and the Searcher depend on a
flexible and robust classification scheme. When

developing the ESC, we discovered the simple hierarchies

(e.g., the Dewey decimal system) and faceted

classification schemes that classify via a fixed number

of characteristic are inadequate. To give one

counterexample, consider software for solving equations.
A straightforward faceting scheme would have us classify
all such software under the intersection of the

functionality = solve facet and the operand = equations
facet. At this point in the Cartesian facet space,

however, we may have several thousand components, far too

many for a user to peruse and choose from at one stroke

without further refinement. The reason is that there are

many different descriptors for equations, e.g.,

algebraic, Diophantine, linear, nonlinear, differential,

separable, etc., and many different kinds of solution

algorithms. It is not right to represent all equations

with the Cartesian product of all equations descriptors

because many compound descriptors denoting equation types

that do not exist will result. Furthermore, it is not

right simply to add every kind of equation to the operand

facet and every kind of solutions strategy to the

i0

19

functionality facet because not every solution strategy

is applicable to every kind of equation. A great number

of empty points in facet space would be created. The

faceting scheme itself breaks down under this

counterexample. Equations and solution strategies

naturally fit into a hierarchy of types that simply does

not map to a Cartesian space. We find that faceting,

while a powerful and even necessary classification

technique, does not suffice alone to represent many kinds

of taxonomies.

15

2O

25

3O

35

In an alternative embodiment of the invention, the

classification scheme of the Searcher is based on

semantic networks, which are standard AI structures for

representing knowledge. Such a taxonomic scheme allows

the builders of a collection to specify arbitrary

characteristics of components of the collection and

arbitrary relations among the characteristics. This

scheme is rich enough to represent virtually any kind of

software artifact, from design documents to program

schemata to data structures to individual procedures.

The Publisher is the subsystem for adding new

classification structures and new components to the ESC.

Its user interface has mandatory and optional on-line

forms to fill in with attributes of a component. The

mandatory attributes constitute catalog and

classification information. They include items like the

name of the component, its function, its programming

language, its application domains, the names of

directories and files containing the component source and

documentation, the version number, the date of posting,

and so one. The values of these attributes are organized

in multiple inheritance hierarchies that represent the

taxonomic hierarchy. The optional attributes are user-

definable, though some are named by reserved keywords,

and constitute search and usage information. The

5

i0

15

2O

25

3O

2O

optional forms allow the user to add arbitrary, new,

hierarchically structured attributes to the description

of any component. The Publisher also rebuilds the entire

hypermedia system, through a lower-level subsystem,

called the Hypermedia Generator, to ensure internal

consistency among the Browser and Searcher and external

consistency with the database.

It is possible to use the Publisher to create

arbitrary databases and to generate a Browser and

Searcher with the Hypermedia Generator. Thus, a user can
create special-purpose, custom collections of software

with front ends just like that of the ESC. these custom

collections are called "Handbooks of Software Components"

to distinguish them from the master "Encyclopedia of

Software Components." It is useful to reserve that

specific name for a single, refereed collection

components. Users are free to create as many Handbooks

as desired, but contributions to the ESC are moderated by

us for the time being.

In another alternative embodiment of the invention,

the Searcher uses deduction and case-based reasoning to

help the user find desired software. In this alternative

embodiment, the Browser can aid a lost user by using

machine learning to detect well-worn browsing paths that

others have traversed and to suggest short cuts. The

instrumentation for such learning features in the Browser

would also pay dividends in the empirical assessment

program by aiding data collection.

In yet another alternative embodiment of the

invention, the ESC suggests some validation grades, such

as those in Table i, to the software contributor.

21

A+ Formally validated.

5 A Exhaustively tested over the input domain.

A- Tested on random inputs (Monte Carlo).

I0

B+ Packaged with test data and working test programs

B Extensively reused by programmers other than the author

of the component (say, in n applications by k other

programmers).

15 C Extensively reused by the author of the component (in n

applications for m years)

D Used by the author in one application.

20 F Untested.

Table 1

25

30

One clear direction for development is in supporting

formal testing regimens directly in the ESC. Requiring

test routines, input sets, and results to be packaged

with components would be a start. Allowing the user to

execute test programs interactively on a candidate

component before committing to retrieval, with support

for perusing and visualizing the results, would be

another step.

35 As regards adaptation, the ESC contains software in

many programming languages and for many hardware and

software platforms. Nothing in the taxonomic scheme of

5

22

the ESC restricts its contents in any way. However, the

programming language and platform attributes are

identified in the description of every component.

Adaptation, that is, the changing of interfaces between a

component, its calling software, and its platform

environment, is currently left to the user.

i0

15

20

25

30

35

The ESC can (and should) contain adaptation

libraries, e.g., software emulations of operating

systems, portable implementations of POSIX, language

bindings of graphics standards, portable programming
language processors, and so on. Directions and tools for

calling C routines from ADA, Fortran routines from Lisp,

etc., should be packaged with components.

The invention overcomes the need for revolutionary

new programming languages, paradigms, tools, and

methodologies to take hold before attacking the problem

of software reuse from the consumer side. The invention

makes it easier not only for consumers of reusable

software to find what they want but for the moderators of

collections of software to maintain and update

collections as well as the hypermedia front ends that

make access easy.

Workinq Example:

The system of Figure 3 will now be described in

detail with reference to the schematic system diagram of

Figure i0. The Central Tool Base I000 is the repository

of the reusable software that the Encyclopedia metaphor

refers to. It receives user queries 1002 about software

attributes and submissions 1004 of new software from the

local browser subsystem 1006, where the user of the

entire ESC system resides. It receives authorized updates

from the ESC maintenance subsystem 1008. It sends

retrievals i010 of software components to the local

browser subsystem 1006. It sends the users' submissions

5

i0

15

20

25

30

35

23

1004 through to the ESC maintenance subsystem 1008.

Access records i011 are automatically collected by the
central tool base i000 and sent to the software

engineering analysis subsystem 1012, where evaluation of
the ESC takes place. The central tool base receives

authorized software component updates 1014 from the ESC

maintenance subsystem 1008. Productivity measures 1016

are transmitted by the browser system 1006 to the

analysis subsystem 1012.

Referring to Figure ii, the central tool base i000

consists of a data base management system (DBMS) ii00,
and interaction monitor 1120, a software tool collection

1130, a backup process 1140 and backup tapes 1150 or an

equivalent mass storage device. The DBMS ii00 implements

the central tool base i000. It controls access to and

modification of the Software Tool Collection 1130 (which

includes metadata), which is the file containing the

actual data. The DBMS Ii00 communicates with that file

via updates and retrievals. Retrievals from the tool

collection 1130 are sent to the local browser subsystem

1006. The DBMS ii00 receives queries 1002 from the

interaction monitor 1120. It receives authorized updates

1014 from the ESC maintenance subsystem 1008 and forwards

them to the software tool collection 1130. The

interaction monitor 1120 receives queries 1002 and

submissions 1004 from the browser subsystem 1006 and

forwards the queries 1002 to the DBMS ii00 and forwards

the submissions 1004 to the Maintenance subsystem 1008.

The interaction monitor makes an access record of all

user activity and forwards the access records i011 to the

analysis subsystem 1012.

Referring to Figure 12, the browser subsystem 1006

consists of a graphical browser 1200, local tool copies

1220, local encyclopedia data base 1230 and a local

maintainer process 1240. The graphical browser 1200

5

i0

15

20

25

30

35

24

includes the interface 1200a of the ESC with the user

1250. As the browser 1006 is used, it generates queries

1002 and submissions 1004, which are sent to the central
tool base i000. Retrievals i010 from the central tool

base I000 are received by the local browser subsystem

1006. Productivity measures 1016 and other evaluation

data are generated in the local browser subsystem 1006

(by the user 1250 or others), and they are sent to the

software engineering analysis subsystem 1012 for analysis

and incorporation into publications and presentations.

The graphical browser 1200 is a reading system for

color, multiwindow, large window graphical hypertext.

The graphical browser 1200 interprets the user's mouse

clicks and keyboard hits, generates queries for the

central tool base, passes user submissions to the central

tool base (which routes them to the ESC maintenance

subsystem after recording the transaction), routes

retrievals of software to the repository of local tool

copies 1220, gets encyclopedia data (cards) from the

local encyclopedia data base 1230, and sends signals to
the local maintainer process 1240. These last signals

inform the local maintainer process 1240 when and how to

update the local encyclopedia data base 1230.

The local maintainer process 1240 receives commands

(or signals) from the graphical browser 1200 that informs

it when an how to update the local encyclopedia data base

1230. These updates take the form of new trays of
informative plates or "cards" to be inserted into the

encyclopedia data base 1230, either adding to it or

replacing old cards. The maintainer process 1240 receives

new cards from the ESC maintenance subsystem 1008.

The user 1250 is a programmer (or software engineer)

engaged in some software development task. The goal of

the ESC task is to measure the impact of ESC on

i0

15

20

25

3O

35

25

programmer productivity. The user 1250 interacts with the

graphical browser 1200, giving it mouse clicks and

keyboard events. The user 1250 receives graphical

displays from the graphical browser 1200. The user 1250
files task status reports to his or her management, which

interprets them and assesses productivity.

Suppose a user has a tool, utility, or other

reusable software component that he feels ought to be

represented in the encyclopedia. The user will have

available a "submit" operation, allowing him to submit

the software and supporting material to the encyclopedia.
The submission first flows from the local browser

subsystem 1006 to the central tool base i000, where it is

automatically logged as a type of transaction or access.

The log entry is sent (automatically) to the software

engineering analysis subsystem 1012. Referring to Figure

13, The user's submission is sent to a submissions data

base 1300 or "holding tank" in the maintenance subsystem
1008. A submissions evaluation team, including a tool

analyst or computer scientist 1302, a hypertext author
1304, a documentor 1306 and a database administrator 1308

takes it from there, evaluates it, tests it, documents

it, and creates graphical hypertext for it. When a

user's submission has passed the ESC maintenance

subsystem evaluation team, an authorized update 1310 may
be sent through a global encyclopedia base 1312 of the

maintenance subsystem 1008 to the central tool base i000,

with a concomitant encyclopedia update going to the local

browser subsystem 1006.

The Software Engineering Analysis subsystem 1012 is
the locus of evaluation of the ESC. Referring to Figure

14, the analysis subsystem 1012 stores the access records

received from the browser subsystem 1006 in a tool base

access history 1400, which is accessed by analysis

processes 1402 through a software engineering scientist

I0

26

1404 who performs productivity analyses 1406 which

produce productivity reports accessible through the local

browser subsystem 1006. The questions, "How is ESC

used?", "Does it increase or decrease programmer

productivity?" are answered by the software engineering

scientist 1404 in this subsystem by examining

productivity data received from users and their

management in the local browser subsystem 1006. They also

examine access records automatically produced in the
central tool base.

15

2O

25

Tray of Informative Plates Metaphor:

Once the user has employed the encyclopedia metaphor

224 (Figure 2) or the search list 226 to select a

specific software component to evaluate for possible use,

the browser 1006 displays a tray of several informative

plates (or windows) describing various aspects of the

selected software component on the user's video monitor.

The preferred video display of a tray 500' is illustrated

in Figure 15 which includes, in addition to the

informative plates described above with reference to

Figure 5, an additional plate 522 containing additional

fields of information. A complete user video display

which includes a window corresponding to the encyclopedia

metaphor, a window for an opened encyclopedia volume and

a window corresponding to the tray metaphor is

illustrated in Figure 16.

3O

35

There are various types of reuseable software

components stored in the ESC. For design purposes these

can be divided into two groups. Group One Components are

subroutines, functions, procedures and objects with a

minimum of entanglements and external dependencies. Group

One components live at the language cell level of use.

They are small, well abstracted modules of functionality

easily incorporated into larger programs. Group Two

Components tend to be larger, stand-alone applications

27

that live at the executive or shell level of use.

Examples of these are screen editors and system
utilities.

i0

15

The illustration of Figure 15 shows the tray display

of informative plates for a Group One component. The tray

display provides, at a glance, a summary of all pertinent

information that a user would require to use the

component. This visual and textual summary provides

several different views of the same component

simultaneously. These views will now be enumerated and

explained with reference to Figure 15. The tray as a

whole is analogous to a part specification such as that
which occurs in a reference work such as The Linear Data

Book.

2O

Plate Definitions

Each tray is separated into 6 graphical and textual

subfields called plates. There are currently six plates,

the Title Plate, the Data Plate, the What Is Plate, the

Call Plate, the Part Plate and the Doc Plate.

25

Title Plate:

This plate contains the name of the software

component, its class and a one sentence explanation of

what the component is or does. The Title Plate is

analogues to the tab on a file folder. It is probably the

first thing that a textually oriented user reads.

30

35

Data Plate:

This plate contains important type and rating

information about the software component. The goal of the

Data Plate is to provide good information for finding the

right component, if it exists. The Data Plate is

analogous to the NEMA rating plate on an appliance that

specifies voltage, current and power requirements and is

the second thing a textually oriented user might read.

28

The format for specifying Data Plate files is

defined below in accordance with the following fields.
Certain fields have buttons on which the user may "click"

as described as follows:

i0

Name Of Field: <.>, <A>

Verbage describing the contents of the field. A Set

description if field values draw from an enumerated list

of possible values. [valueA, valueB, ...] Example:

Possible contents of field.

15

20

If the button symbol <.> (shown in angle brackets

above) is present then the contents of the field are

accessible through an on card button that the user may

press at any time. If the on screen icon <A> (angle

brackets imply it's optional) is present then the

contents of the field are interpreted graphically in some

form other than the Data Plate on the card. Bold italics

indicates fields used in hypertext primary navigation

schemes. Bold only indicates fields that are candidates

for use in secondary or backup navigation schemes.

25

30

35

The Data Plate fields are:

Native Name Field: •

This field specifies the name of the component in its

implementation language without argument lists,

delimiters, or separators.

Example: dot Vec3

English Name Field: •

This field specifies the English name that a person would

use to succinctly describe the component.

Example: Dot Product

One Line Description Field: •

This field specifies in eighty characters or less what

5

29

the component is or does. Example: Dot, scalar or inner

product of two three vectors.

Explanation Field: •
This field specifies in one hundred words or less what

the component is or does. Example: The dot product

operator computes the magnitude of the projection of one
vector onto another.

i0

15

20

25

30

35

Read Me Field: •

This field specifies the name of a file containing

documentation in excess of typewritten page about the

component. Example: Vec3IO.doc

References Field: •

This field specifies the name of a file containing

directly relevant theoretical, science, or engineering

information about the component. Example: Vec3.ref

Language Field: •

This field specifies the language in which the part is

written. The set of possible language field specifiers

is: [Ada, C, Fortran66, Fortran77, Algol68, Modula2,

Pascal, Other] Example: C

Category Field:

This field indicates the category of problem that the

component is designed to address. The set of possible

category field specifiers is published in: "The Full

Computing Reviews Classification Scheme 1987 Version"

Example:

G.I.3 Numerical Linear Algebra:

Vector Operations

Genus Field: •

This field indicates the bundling class of which the

component is a member. The set of possible genus field

30

specifiers is: [Abstract Data Type,Library, Input Output

Package, Demonstration, Test, Other] Example: Abstract

Data Type

I0

15

20

Species Field: •

This field indicates the type or aggregation level of the

component. The Species Field is language dependent.

For the 'C' language:

[Main Program, Procedure, Macro, Structure]

For the Fortran language:

[Main Program, Subroutine, Function,

Block Data Subprogram, Common Block]

For Pascal:

[Procedure, Function, Type]

For Modula:

[Definition Module,

Implementation Module, Procedure, Type]

For Ada:

[Subprogram, Task, Package]

Example: Procedure

25

Package Name Field

This text field names any membership that the part has in

a larger aggregation such as a file or package. Example:

Vec3.c

3O

I/O Name Field:

This text field specifies the file containing Ii0

components for the datatypes that the current component

manipulates. Example: Vec3IO.c

35

Test Stand Field:

This text field specifies the name of any test stands

constructed for use with this component. Example:

Vec3Test.c

Demo Stand Field:

5

i0

15

2O

25

31

Like test stands but simpler, this text field specifies

the name of any demonstration stands constructed for use

with this component. Example: Vec3Demo.c

Performance Data Field:

This text field specifies the file containing performance

information about the component . Example:

Vec3Test.pmon

H/W Kind Field:

Indicates machine makes, models and configurations

capable of executing the component. Example:

Sun 3/50 and

Sun 3/160 and
Iris 3130 and

Iris 4D/20

S/W Env Field:

Indicates operating system, compiler, and executive or

shell requirements for compiling, linking or executing

the component. Example:
Berkeley 4.2 Unix or

System V Unix
Cshell cr

Bourne shell

3O

S/W Scripts Field:

Specifies the name of compilation and linking scripts

necessary to make the component operational. Examples:
Vec3Test.make

RunVec3.csh

35

Test Kinds Field:

Indicates what kind of testing has been done and to what

extent. Draws from set of: [Certified, Range Tested

Random Input Tested] Allowing untested software

components to be placed in the encyclopedia is probably a

5

i0

32

bad idea. Example: Random Input Tested

Copyright Field:

Specifies the name and address of the holder(s) of any

copyrights, liens, or other encumbrances on the software

component. Example:

Copyright (c) 1984

Gene Muzak AND

Supercomputing Services Inc. AND

Jet Propulsion Laboratory AND

Motorola Mainframes

15

20

25

3O

35

Version Field:

Component version designators.

Example: Version i.i April 6, 1984

Authors Field:

This ASCII text field specifies the names of the

author(s) of the component at the time the component was

contributed to the system, with the primary contributor

(if applicable) listed first, the secondary contributor

next and so on. If the component had multiple

contributors who contributed equally, the listing order

will be determined by random selection and assignment,

and the names will be presented with an asterisk (*) to

indicate that this is the case. Example:

Gene Muzak*,

Van Warren*,

Matt Rain*

Address Field:

Specifies the terrestrial and electronic mail addresses

of the component author(s). Sufficient information should

be provided to facilitate communication with real

persons, even if this is redundant with other information

in the database. Template:

I0

15

2O

25

3O

35

33

Name Affiliation (Company or Institution)

Mail Stop
Street

City, State, Zip

Email

Example:

Gene Muzak Supercomputing Services Corp.

Mail Stop 421-DM 800 Bashner Road Missoula,

Montana, 54121

muzak@ssc.desi.arpa

ee.

same for second author

e..

same for third author

Notes:

i) The city and state in the Address Field will be used

as a primary navigation scheme (location navigation).

2) The Authors Field and Address Field are a matched

pair. A pair is present for each author. The Authors

Field is perpetually static, however a contributing

author may request that his or her address fields be

updated to reflect changes in institutional affiliation

or location.

Date In Field:

Gives the date the component was contributed to the

system. Example:

February I, 1993

Requests Field:

Gives the number of requests made for the component since

its contribution. Example:267

Note:

The Date In and Requests fields taken together form an

informal but democratic method of rating software.

i0

15

2O

25

3O

35

34

Derivative information might be valuable here, showing

popularity as a function of time.

Inputs Field: •

Lists inputs and their types, if applicable, to the

component. The inputs should be declared as they would in

the native language definition of the component. Example:

Vec3 a,b;

Outputs Field: •

Lists outputs from the component, including pointers in

the input argument list that are touched by the component

during its operation. Example:

extern Float dot _Vec3 () ;

Entry Points Field:

Lists names and calling interfaces of components with

multiple entry points such as abstract data types or

object types.

Exit Paths Field:

Lists information about multiple exit paths, if

applicable.

Exceptions:

Lists exceptions states, error flags, and error

conditions capable of being triggered during operation of

the component. Example:
ZERO LENGTHVECTOR

HUGECOMPONENTOVERFLOW

What Is Plate:

This plate contains an illustration indicating what the

software component is, what it does or what it is used
for.

Call Plate:

35

The Call Plate shows a generic calling sequence as it

would appear in a user program or source declaration. Its

purpose is to convey code-like usage and typing

information sufficient for use in a textual cut and-paste

environment.

i0

15

2O

25

3O

Part Plate:

The Part Plate is visual analog of the calling sequence

for a dataflow programming paradigm. It shows the

software component or part, its inputs and output arcs,

and the typing, if applicable that binds to the I/O arcs.

Instance names are not annotated to the dataflow diagram

since they are not necessary at the user level. (Do

plumbers name their pipes Mary or Fred?) Type names are

affixed to the arcs since it is (or should be) illegal to

join dissimilar data streams without a coupler. The

purpose of the Part Plate is to convey code-like usage

and typing information adequate for use in a graphical

cut and-paste environment.

Doc Plate:

The Doc Plate contains a summary explanation of what the

component is, does, or is used for. It is the textual

analog of any visual material in the What It Is Plate.

This analogy should be enforced when components are added

so that this dualism is evident to the user. Newer

versions of the Doc Plate will contain a "more" button

for more textual detail. Similarly the What Is Plate

might animate when clicked or struck, providing

additional graphical detail.

35

Button Requirements:

Read Me Button:

Enables access to the mandatory Read Me documentation

file in ASCII text format.

Perform Button:

5

i0

15

2O

25

3O

36

Provides access to any performance data & benchmarks.

Reference Button:

Provides access to any technical references providing

theoretical, science, or engineering information about

the component.

Depends On Button:

For the 'C' language would provides access to the include

files required for this component to compile, link, or

run. For other languages would convey what this component

depends on environmentally or definitionally to operate.

Left Sibling Button:

Accesses the component card for the left sibling when

pressed from the component viewing level.

Up to Parent Button:
Accesses the view of the ensemble of components when

pressed from the component viewing level.

Right Sibling Button:

Accesses the component card for the right sibling when

pressed from the component viewing level.

While the invention has been described in detail

with specific reference to preferred embodiments thereof,
it is understood that variations and modifications

thereof may be made without departing from the true
spirit and scope of the invention.

5/
J

ENCYCLOPEDIA OF SOFTWARE COMPONENTS

i0

15

2O

25

ABSTRACT OF THE INVENTION

Intelligent browsing through a collection of

reusable software components is facilitated with a

computer having a video monitor and a user input

interface such as a keyboard or a mouse for transmitting

user selections, by presenting a picture of encyclopedia

volumes with respective visible labels referring to types

of software, in accordance with a metaphor in which each

volume includes a page having a list of general topics

under the software type of the volume and pages having

lists of software components for each one of the generic

topics, altering the picture to open one of the volumes

in response to an initial user selection specifying the

one volume to display on the monitor a picture of the

page thereof having the list of general topics and

altering the picture to display the page thereof having a

list of software components under one of the general

topics in response to a next user selection specifying

the one general topic, and then presenting a picture of a

set of different informative plates depicting different

types of information about one of the software components

in response to a further user selection specifying the

one component.

o

0
0

DISTRIBUTED SOFTWARE
COLLECTIONS

-216

220

GENERATION

222

MULTIPLE HYPERMEDIA

SEARCH/BROWSE TOOLS

I APPUCATIONDOMAINIt'-I I, ¢O,MI=ILERSI!_
I AUTHOR Ir-ll "STALLMAN IFE_I
I AUTHOR II I1" RITCHIE I r--7

J

OBJECT-ORIETATED DATABASE
REFLECTS THE STRUCTURE AND
CONTENTS OF THE COLLECTIONS

HYPERMEDIA
BOOKSHELF BROWSER

i II!1 ir--]
r--I IAT_T PORTABL.E C COMPILER _,_ J

r---}l THE GNU C ,COMPILER i / 224

sEARcH-BY-LOGICAL-QUERY INTERFACE __230 -_

228_ " H

rxG.2 II

DAG-FORM
STACK-FORM NAVIGATOR NAVIGATOR

(HISTORY LIST) (OVERVIEW DIAGRAM)

L (OFF-LINE,

f

302_ USER

ESC APPLICATION DRIVER AND SUBSYSTEM
GRAPHICAL USER INTERFACES (GUl's)

j
BOOKSH,'LF

I BROWSER! I SEARCHERI I PUBL'SHER

I HYPERMEDIA ! _

I SPECIFICATION i 310 -",,I COMPONENTS
I DATABASE I_- _ _ I DESCRIPTION

--_ RETRIVER _ "_ ,_
-I,, , _ "-" " | HYPERMEDIAI

_ _"- 316 312-_ GENERATOR I

J

LOCAL CACHE,
ON-LINE

SOFTWARE
REPOSITORY

r318

LOCAL
ENVIRONMENT

J

FIG. 3

e,,i
o

o
o

I10
o

7

0
0

e,,l
0
led

Ow

I:
lw

i._

"6

_o

_E
0 _-

1_'13

o*

I<_I!l

.EI-

IZ .)_ ,II,

. r-

i

_IO ol
°tOo J_

°°°_Oo_ _ _

I.:'.l"

m

I

\i "

N 0o - 1_"_ _ _--/-c _A.

I_i,i

o_.>-

m_

o
---_ i/)
>w

a. o_Zm
_z _

u3_
Dm ,,ci,

C:) :C_

LIJ

I, I i_ (I')
zrn
-- _.,._
"_U3

oo;
0 "" "_

I--
zO"_
i,i1--1313
(.3

J

r

RETRIEVALS

I
I DBMS

RETRIEVALS

UPDATES,_ 1010

TOOL

COLLECTION

& M ETADATA

1014_

AUTHORIZED
UPDATES

, I

_-1100

QUERIES

1130

1140-_

BACKUP
PROCESS

1004.

USERS'
SUBMISSIONS

I/,_-1120

INTERACTION ___11
MONITOR

ACCESS
RECORDS

1002

.2
QUERIES

k
SUBMISSIONS

I

FIG. 11

l_ 7o-t_>°f$_--l-c _

_-1010 1250

RETRIEVALS 1200 (z

TASK
STATUS

REPORTS

PRODUCTIVITY
REPORTS

GRAPHICAL
BROWSER

RETRIEVALS

/,.-- 1220

LOCAL /

"- TOOL

"_ COPIES

1002

QUERIES

1004_

SUBMISSIONS

__I

1310'J

T 1230"_ LOCAL /
ELcYcLO__ I ENCY_LO; EDIA

DATA _t _,_r_

,-I

ENCYCLOPEDIA
ACCESS
SIGNALS

ENCYCLOPEDIA
UPDATES

I

.__ LOCAL

MAINTAINER
ENCYCLOPEDIA PROCESS

UPDATES

1240 J

]_IG. 12

1004--.--_
USERS'

SUBMISSIONS

i
UBMISSIONS

DATABASE

I
USERS'

SUBMISSIONS

-1300

1310'-_ i

ENCYCLOPEDIA
UPDATES

I

/
BASE

1310 .--_ k

ENCYCLOPEDIA
UPDATES

ENCYCLOPEDIA ..,,..._.-.......,._ 1304

f _ UPDATE f

PROCESSED DOCUMENTATION i
SUBMISSIONS ORDERS COMPLETED

jf _ DOCUMENTATION

1308 E.I.E_1306

OMPL

DOCUMENTATION

AUTHORIZED
UPDATES

FIG. 13

1011----_

ACCESS
RECORDS

1016-_,

PRODUCTIVITY

I / REPORTS

TOO,B_s,-F ''°° I
ACCESS / I

HISTORY _ /J

14o4 J, _

/ r"- 14°6
[EI_(_iNEERiI_G _ PRODUCTIVITY/

-sCIENTiST- ' / ANALYSIS /

_1402

ANALYSIS
PROCESSES

FIG. 14

0

U
U

\

0

-r
Q.

0

Ill

!!!

\

II

0 _ GO
\ 0 0
\
I

0

0
0

0
0

0

